
Introduction to

LabVIEW Design Patterns

2

Why Should I Use One?
Save time and improve the longevity and readability of your code.

Definition: A well-established solution to a common problem.

What is a Design Pattern?

… or else…

3

4

Examples of Software Engineering Debt
(just some of the most common LabVIEW development mistakes)

 No source code control (or Project)

 Flat file hierarchy

 ‘Stop’ isn’t tested regularly

 Wait until the ‘end’ of a project to build an application

 Few specifications / documentation / requirements

 No ‘buddying’ or code reviews

 Poor planning (Lack of consideration for SMoRES)

 No test plans

 Poor error handling

 No consistent style

 Tight coupling, poor cohesion

 ni.com/largeapps

5

Designing for SMoRES
Criteria for a well designed software application:

Scalable: how simple is N + 1?

Modular: is the application broken up into well-
defined components that stand on their own?

Reusable: is the code de-coupled from the current
application well-enough such that it could be
reused in a future project?

Extensible: how painful is it to add new
functionality?

Simple: what is the simplest solution that satisfies
all of the listed criteria and the requirements of
the application?

6

You Should Already Be Familiar With..

• Loops

• Shift Registers

• Case Structures

• Enumerated Constants

• Event Structures

• LabVIEW Classes

7

Design Patterns

• Functional Global Variable

• State Machine / Statecharts

• Event Driven User Interface

• Producer / Consumer

• Queued State Machine – Producer / Consumer

Functional Global Variables

How do I share data across a application

without using Global or Local Variables?

9

Background: Global and Local Variables

• Can cause race conditions

• Create copies of data in memory

• Cannot perform actions on data

• Cannot handle error wires

10

Breaking Down the Design Pattern

• While loop

• Uninitialized shift

registers have memory

• Case structure

• Enumerated control

11

DEMO

Uninitialized Shift Registers

12

Basic Actions

• Set the value of the shift register

INITIALIZE

INITIALIZE

13

Basic Actions

• Get the value currently stored in the shift register

GET

GET

14

Action Engine

• Perform an operation upon stored value and save

result

• You can also output the new value

ACTION

ACTION

15

How It Works

1. Functional Global Variable is a Non-Reentrant SubVI

2. Actions can be performed upon data

3. Enumerator selects action

4. Stores result in uninitialized shift register

5. Loop only executes once

16

DEMO

Functional Global Variables

Uninitialized shift register has memory

Action determines which case is executed

Only used in Initialize case

Loop only executes once

Examples of other ‘actions’

17

Benefits: Comparison

Global and Local Variables

• Can cause race conditions

• Create copies of data in memory

• Cannot perform actions on data

• Cannot handle error wires

• Drag and drop

Functional Global Variables

• Prevent race conditions

• No copies of data

• Can behave like action engines

• Can handle error wires

• Take time to make

18

Recommendations

Use Cases

• Communicate data between code without connecting wires

• Perform custom actions upon data while in storage

Considerations

• All owning VIs must stay in memory

• Use clusters to reduce connector pane

• Using stacked shift registers will track multiple iterations

State Machine

I need to execute a sequence of events, but the

order is determined programmatically

20

Soda Machine

Initialize

Wait

Change Quarter

Dime
Nickel

Exit

Vend

Soda costs $0.50

No input

Quarter Deposited

Total < 50

Total >= 50

Change

Requested Dime Deposited

Nickel Deposited

Total < 50 Total < 50

Total >= 50
Total >= 50

Total > 50

Total = 50

21

Background

Dynamic Sequence: Allows distinct states to operate in a

programmatically determined sequence

Static Sequence

22

Breaking Down the Design Pattern

• Case Structure inside of a While Loop

• Each case is a state

• Current state has decision making code that

determines next state

• Use enumerators to pass value of next state to shift

registers

23

The Anatomy of a State Machine

Transition Code

FIRST STATE

NEXT STATE

Step Execution

Shift registers used to carry

state

Case structure has a case for every state Transition code determines next state

based on results of step execution

FIRST STATE

?

24

Step

Execution

Step

Execution

Step Execution

Transition Code Options

25

DEMO

State Machine

26

Recommendations

Use Cases

• User interfaces

• Data determines next routine

Considerations

• Creating an effective State Machine requires the

designer to make a table of possible states.

Event Driven User Interface

I’m polling for user actions, which is slowing my

application down, and sometimes I don’t detect them!

28

Background

Procedural-driven programming

• Set of instructions are performed in sequence

• Requires polling to capture events

• Cannot determine order of multiple events

Event-driven programming

• Execution determined at run-time

• Waits for events to occur without consuming CPU

• Remembers order of multiple events

29

Breaking Down the Design Pattern

• Event structure nested within loop

• Blocking function until event registered or timeout

• Events that can be registered:
 Notify events are only for interactions with the front panel

 Dynamic events allows programmatic registration

 Filter events allow you to screen events before they’re processed

30

How It Works

1. Operating system broadcasts

system events (mouse click,

keyboard, etc..) to applications

2. Registered events are captured by

event structure and executes

appropriate case

3. Event structure returns

information about event to case

4. Event structure enqueues events

that occur while it’s busy

31

How It Works: Static Binding

• Browse controls

• Browse events per control

• Green arrow: notify

• Red arrow: filter

32

DEMO

Event Driven User Interface

33

Recommendations

Use Cases

• UI: Conserve CPU usage

• UI: Ensure you never miss an event

• Drive slave processes

Considerations

• Avoid placing two Event structures in one loop

• Remember to read the terminal of a latched Boolean control in its

Value Change event case

• When using subpanel controls, the top-level VI containing the subpanel

control handles the event

Producer / Consumer

I have two processes that need to execute at the same time,

and I need to make sure one can’t slow the other down

35

Background

I want to execute code in parallel and at asynchronous

rates, but I need to communicate between them!

I have two processes that need to execute at the same

time, but I want them to be independent of one another,

and I need to make sure one can’t slow the other down

36

Breaking Down the Design Pattern

• Data independent loops

• Master / slave relationship

• Communication and synchronization between loops

37

How It Works

• One or more slave loops are told by

a master loop when they can run

• Allows for a-synchronous execution

of loops

• Data-independence breaks dataflow

and allows multi-threading

• De-couples processes

38

Master / Slave: Loop Communication

• Variables

• Occurrences

• Notifier

• Queues

• Semaphores

• Rendezvous

39

Queues

Adding Elements to the Queue

De-queueing Elements

Reference to existing queue in memory

Select the data-type the queue will hold

Dequeue will wait for data or timeout (defaults to -1)

40

Producer / Consumer

41

DEMO

Producer / Consumer

42

Recommendations

Use cases

• Handling multiple processes simultaneously

• Asynchronous operation of loops

Considerations

• Multiple producers One consumer

• One queue per consumer

• If order of execution of parallel loop is critical, use

occurrences

Queued State Machine &

 Event-Driven Producer / Consumer

I need to enqueue events from a user that control

the sequence of events in a consumer loop

44

Breaking Down the Design Pattern

• Event-driven user interface design pattern

• State machine design pattern

• Producer consumer design pattern

• Queued communication between loops

45

How It Works

1. Events are captured by

producer

2. Producer places data on the

queue

3. State machine in consumer

executes on dequeued data

4. Parallel SubVIs

communicate using queue

references

46

Queues Recommendations
Refer to queues by name for

communication across VIs
Use a cluster containing an

enum and variant as data-type

47

48

Master Queue

49

Event-Driven

Producer Loop

50

State and Data are

Enqueued

51

State Machine

Consumer

52

Additional Queues

(Q1 and Q2)

53

States ‘Produce’ to

Additional Queues

55

SubVIs Consume

Data from Q1 and Q2

56

DEMO

Queued State Machine – Producer/Consumer

57

Recommendations

Use Cases

• Popular design pattern for mid to large size

applications

• Highly responsive user interfaces

• Multithreaded applications

• De-coupling of processes

Considerations

• Complex design

58

Adding Your Own Design Patterns

C:\Program Files\National Instruments\LabVIEW 8.5\templates\Frameworks\DesignPatterns

59

Resources

• Example Finder

• New >> Frameworks

• Ni.com/labview/power

• Training

 LabVIEW Intermediate I & II

• White Paper on LabVIEW Queued State Machine

Architecture

 Expressionflow.com

http://expressionflow.com/2007/10/01/labview-queued-state-machine-architecture/
http://expressionflow.com/2007/10/01/labview-queued-state-machine-architecture/

Certified LabVIEW

Developer Exam

Certified LabVIEW

Architect Exam

Certified LabVIEW

Associate Developer Exam

LabVIEW

Core 1

LabVIEW

Core 2

LabVIEW

Core 3

Advanced

Architectures

for LabVIEW

Developer Senior Developer Software Architect

/ Project Manager

NI Certifications Align with Training

"Certification is an absolute must for anyone serious about calling himself a
LabVIEW expert... At our organization, we require that every LabVIEW developer
be on a professional path to become a Certified LabVIEW Architect."

 - President, JKI Software, Inc.

Managing

Software

Engineering

in LabVIEW

Download Examples and Slides

ni.com/largeapps

Software Engineering Tools

Development Practices

LargeApp Community

